AD-A241 040
RO

RAD(:-TR-89-228 ’ :
Final T echnica! Keport
January 1990

TACTICAL EXPERT MISSION PLANNER
(TEMPLAR)
DTIC }

TRW Defense Systems Group ELECTE

0cT.03.199UR B
Sponsored by : B ==
Defense Advanced Research Projects Agency : » ==
ARPA Order No. 5769 SR NPE S =

i

i
LL22L-16

I
|
)

'|
b

Ak

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION Ui~LIMITED.

The views and conclusions contained in this docurment are those of the authors and should not be |
interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

Rome Air Development Center
Air Force Systemsi:@’m
Griffiss Air Force Base, NY -5700

21-10 ©

¥ .
20

Iv
lec




This report has been reviewed by the RADC Public Affairs Division (PA)
and is releasable to the National Technical Information Services (NTIS) At
NTIS it will be rele:zsable to the general public, including foreign nations.

RADC-TR-89-328 has been reviewed and is approved for publication.

APPROVED: o .
Wit b

ALBERT G. FRANTZ
Project Engineer

RAYMOND P. URTZ, JR.
Technical Director
Directorate of Command & Control

FOR THE COMMANDER:

d;uw%@

IGOR G. PLONISCH
Directorate of Plans & Programs

& sy

If your address has changed or if you wish to be removed from the RADC
msiling list, or if the addressee is no longer employed by your
organization, pl=ase notify RADC (COAD ) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual oblizations or
notices on a specific document require that it be returuned.



TACTICAL EXPERT MISSION PLANNER (TEMPLAR)

Chuck Siska
: Barry Press
! Paul R. Lipinski

Contractor: TRW Defense Systems Group
Contract Number: F30602-85-C-0249
Effective Date of Contract: 3 September 1985

Contract Expiration Date: 3 December 1988
Short Title of Work: Tactical Expert Mission Planner
(TEMPLAR)

Period of Work Covered: Sep 85 - Dec 88

Principal Investigator: Chuck Siska
Phone: (213) 812-8189

RADC Project Engineer: Albert G. Frantz
Phone: (315} 330-7764

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Albert G. Frantz, RADC (COAD),
Griffiss AFB NY 13441-5700 under Contract
F30602-85-C-~0249.




UNCLASSIFIED
SECORITY TASSIFICATION OF YHIS PAGE

s form ‘DMM
REPORT DOCUMENTATION PAGE OMB No. 0704-0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A -
E2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILARILITY OF REPORT
Approved for public relezase;
2b. DECLASSIFICATION / DOWNGPADING SCHEOULE distribution unlimited.
N/A
{4 PCRFORMING GRGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
TEMPLAR CDRL AO10 RADC-TR-89-~-328
6a. NAME UF PERFORMING ORGANIZATION 6b. QFFICE SYMBOL | 7a. NAME OF MUNITORING GRGANIZATION
(it spplicable)
TRW Defense Systems Group Rowe Air Development Center (COAD)
6¢. ADDRESS (City, State, and ZIF Code) 7b. ADDRESS (City, State, and ZIP Code)
DH5/2461
1 Space Fark
Redondo Beach CA 90278 Griffiss AFB NY 13431-5700
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENY IDENTIFICATION NUMBER
ORGANIZATION Defenge Adv nced (if applicable) ’ R
Research Projects Agenc F30602-85-C-0249
8c. ADDRESS (City, State, and ZiP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
1400 Wilson Boulevard ELEMENT NO. | wO. NO IACCESSION NO
Arlington VA 22209 63789F 2321 05 04

11. TITLE (includh Security (assification)
TACTTCAL EXPERT MISSION PLANNER (TEMPLAR)

12. PERSONAL AUTHOR(S)
Chuck Siska, Berry Press, Paul R. Lipinski

$19. ABSTRACT (Continue on reverse i¥ necemary end identify by block numbon

The TEMPLAR advanced development model was desigred to prove Artificial intelligence (AIY
techniques could be applied to the large-scale Tactical Alr Force problem of Air Tasking
Order (ATO) generation. At over 300K lines of code, TEMPLAR is one of the large Al programs
ever produced for the Adr Force. TEMPLAR docs detailed tracking and scheduling of alrcraft
and weapons use for an entire theater's Air Force assets. TEMPLAR runs on a Symbolics LISP
machine and was written in LISP, Rnowledge Craft and Flavors. Object-orierted forms and
maps overlays present the information in a legical way to the users and connect to frames
and demons that maintain the knowledge base. TEMPLAR allows for wultiple, netw.rked,

planning workstations, each maintaining the entire current lmowledge base at a cerresponding
comnunications cost. ~

"13a. TVPE OF REPORT 13b. TIME COVERED 6. DATE OF REPORT (Year, Month, Day) |'S. PAGE COUNT
Final FROM _Sep B85 vOo_Dec 88 January 1990 64
16. SUPPLEMENTARY NOTATICN o
N/A
7. COSATI CODES "SUBJECT TERMS (Continie on reverse IF necersary and igentity by biock number)
FILD GROUP SUGGROIIP(J) N
12 05 Y Knowledge based systems / rmificial intell igence/ 4
25 05 Fore gyel ARG w - g 8

\"\_, =
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 27, AESTRACT SECURITY CLASSIFICATION
G uncLassireountimTed L same as ®ef. [T onic users | UNCLASSIFIED
228. NAME QF RESPONSIOLE INDIVIDUAL 22b. TELEPHONE (Include Ares Code) | 22 QFFICE SYMBOL
Albert G. Frentz (315) 330-7764 RADC (COAD)
DD Form 1473, JUN 86 Previous editions are casolete. _SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED




UNCLASSIFIED

UNCLASSIFIED



TABLE OF CONTENTS

1.0 General
1.1 Purpose of Final Report
1.1.] Summary
1.2 Project History
1.2.1 Overview
1.2.2 Contract Phases
1.2.3 Software Prototypes
1.2.4 Prior Automation
1.2.5 Deliverables
1.3 Project References
1.4 Terms and Abbreviations
2.0 System Implementation
2.1 Mixed Initiative
2.2 Enumeration and Ordering
2.3 Automatic Checking of Evolving Plans
2.4 Flexible Man-Machine Interface
2.4.1 Natural Language
2.4.2 Menus
2.4.3 Graphics
2.4.4 MMI Context
2.5 Knowledge Representation Modifications
2.6 Mission Task Plaaning
2.7 Knowledge Base
2.8 Planning
2.8.1 Autoplanning
2.8.2 Supply Tracking
2.8.3 ATO Presentation
2.9 Context Mechanism
2.10 Job Modcls
3.0 Test and Evaluation
3.1 Technical Evaluation Testing
3.2 Demonstration
3.3 Final Acceptance
4.0 System Development Summary
4.1 Sofiware Development Process
4.2 Random Observations
4.2.1 Al Tools
4,22 Communication Interfaces
4.2.3 Map Backgrounds
4.2.4 Access to Experts
4.2.5 Implementation Language and Hardware
4.2.6 The Missing Tasks
4 2.7 The Cost of Incremental Prototypes
4.2.8 On Appropriate Technology
4.2.9 Network Considerations

QO W B WA N = v e e e



1.0 GENERAL
1.1 Purpose of Final Report

The objective of the Final Report on the TEMPLAR ADM development project is to
report on the technical work accomplished, to identify the nature of the problems
cncountered in the course of completing the rescarch, to report oen both the positive and the
negative results, and to report on the status of the testing.

1.1.1 Summary

Overall the TEMPLAR project is a success. TEMPLAR demonstrates that Artificial
Intelligence techniques can be successfully applied to the Tactical Air Force problem of Air
Tasking Order (ATO) generation. To date TEMPLAR stands as one if not the largest of the
delivercd Al programs in the Air Force, TEMPLAR is large in the sense of the objectives it
met as weil as the final size of the delivered code (almost 350K lines of LISP). There are
three TEMPLAR systems installed, one at RADC (Rome Air Development Center), another
at WPAFB (Wright Patterson Air Force Base) HRL (Human Resources Laboratory) and the
third, after having been previously installed and demonstrated at HQ TAC(Tactical Air
Command) for a year, is now at an operational user command, HQ 9th AF, Shaw AFB.

1.2 Project History
1.2.1 Overview

TEMPLAR was initiated to demonstrate that Artificial Intelligence techniques could
be successfully appiied to the full-scale operational problem of Air Tasking Order (ATO)
generation. The TEMPLAR contract initiated in September of 1985 by the Air Force Rome
Air Development Center (RADC) with TRW, followed the development of research
prototypes at Mitre Corporations and an carlier TEMPLAR contract with another company.
TEMPLAR also followed the development of the TAOTTS system at the Air Force Human
Resources Laboratory (HRL). TAOTTS was never pursued separately foilowing the start of
TEMPLAR development.

At the time the project began, there was essentially no automation at Ninth Air
Force (the contract-specified experts) to assist ATO planning. Two spreadshects, PLANAID
and TASKAID, had been d~sveloped to aid sortie tracking and tanker requirem« its
planning. Both spreadsheets ran on personal computers. The cutput of those spreadsheets
was able to be transferred to the Computer-Aided Force Management System (CAFMS), a
system which essentially provides data base entry and processing services during the ATO
development, via an interface betwezen the personal computers and the CAFMS computers.

Page |



During the development of TEMPLAR, the spreadsheets were augmented with a BASIC
program to assist in the flow nJaxning for CAS and DCA missions.

Prior to the delivery of TEMPLAR, no comprechensive system1 of automation for the
Ninth Air Force ATO (9AF) planning process was available. Conscquently, the ATO
planning process, although described in a variety of Air Fos« - ablications and the subject
of a number of prior contracts, was essentially a manual efforv. The key operations,
strategies, and methods of 9AF ATO planning had been developed over a number of years,
but were largely undocumented. Many of the procedures were oriented around the idea
that, by doing planning in a standardized way, combinatorial explosive numbers of
planning variations could be avoided and the ATO completed in a reasonable amount of
time.

1.2.2 Contract Phases

The TEMPLAR contract was organized into three phases. Phase cne consisted of a
review of prior technology, rec uirements development, and preparation of a design plan.
Phase two was the devclopment of the system. Phase three was integration, test, and
analysis of the system. The contract called for one TEMPLAR system to be installed at
RADC, with a period of performance of 33 months beginning September 1985. All external
interfaces were to be simulated with the exception of the one for CAFMS. Contract
modifications later added a number of requirements on the project, including the fellowing:

o Delivery of TEMPLAR systems to HRL and to TAC Headquarters.

¢ Delivery of four incremental prototypes in addition to the final Advanced
Development Model (ADM) software.

Addition of a Limited ENemy Situation Correlation Element (LENSCE)
electronic interface.

The TEMPLAR ADM software was installed and accepred at RADC in October of
1988.
1.2.3 Software Prototypes .

The four TEMPLAR prototypes provided increasing functionality, leading to the
delivery of the final ADM. The summary capabilities of the prototypes plus the ADM werc
these:

1 It is recognized that the Air Force’s CAFMS (Computer Assisted Force Management System) was a significant

step in the aytomation of the TACC and generation of the ATO. It however, did not attempt to automate the
portion of the planning process that TEMPLAR did.




1. Forms display and sequencing from one¢ form to another. Rudimentary data
entry capability, with no processing of entered data. Initial map display, with
pan and zoom,

2. Initial implementation of sclected forms. Initial map editing capability.
Integration of Least Commitment Prototype planner for autoplanning
demonstration capability. Initial scripting capability. Initial Natural Language
input capatility.

3. Initial functional Target Planning Worksheet, fuel calculations, tankering
elements of Knowledge Base, and Guidance & Apportionment forms.

4. Conversion to Symbolics Genera 7.1. Full map editing capability. DMA vidco-
disk map backgrounds. Additional forms implemented. Initial Natural Language
input processing.

ADM. All functionality complete, including replacement of Least Commitment \
Planner prototype with package planner, flow planner, air-air refueling planner,
and mission clement planner. CAFMS and LENSCE interfaces complete to
Interface Control Document specifications. Incorporation of classified Blue Flag
scenario. Networking capability. Job Models. Knowledge Base editor. ATO save
and restore. Enumeration, ordering and constraint checking.

1.2.4 Prior Automation

There is an important parallel in this chronology of software prototypes to the issue
of delivering incremental prototypes. For the most part, the "Al" capabilitics in TEMPLAR
arrived in the final ADM delivery and were only present in dcmonstration form in the
prototypes. The two key reasons for this were as follows:

o The effort during the first year of the program was devoted to documentation
that was required by the ccntract and dictated by the conventional software
development project schedule. The workload in preparing the document
deliverables up through August of 1986, culminating with the draft of the
Functional Description (FD), was such that the project had no time for large-
scale prototyping efforts to validate the Knowledge Basc design and Al
algorithms. When combined with the fluidity of the design at the time the FD
was puohshcd this lack of time to validate the Knowledge Base and the Al
algorithms can be used as the basis for a compelling argument that conventional
documentation schedules are not right for Al systems development.

o The fact that there was no initial automation base for the ATO planning process
cannpot be overemphasized in importance. Before the Knowledge Base and
approaches for the Al planners could be solidified, it was necessary to produce

. and validate a manual, non-Al planning system. That non-Al planning system

Page 3




was the essential content of system version 4.8, which was complcted after the
formal delivery of prototype 4. Most of the Knowledge Base used for the Al
planners was complete at the time version 4.8 was released.

Conventional automation could have been valuable in the development of TEMPLAR
in other ways:

o Sophisticated fuel consumption calculation software was beclieved to be available
from the TAOTTS development. The completeness and accuracy of the TAOTTS
code remains unclear. Testing revealed enough problems that the project decided
that it would be impractical to usc it as a base for TEMPLAR fucl calculations.
Several attempts were then made with the Ajr Force to acquire fucl calculation
software developed organically. Problems of differing hardware/software
systems and diffuse points of contact made this impractical as well. The final
fucl calculation software used in TEMPLAR is algorithmically derived from the
simplified fuel calculations uszd in the PLANAID spreadsheets since these
calculations are known to be compatible with other knowledge being acquired
from 9AF.

o Communications interface definition was a continuous problem. Issues addressed
but unresolved included definition of which system version would be the

Leoafioas ammmesimioma 3 -a ~n - Y 2 A H : - -
bascliiic, acquiring interface specification data, and acquiring interface st data.

Neither of these (or several other issues) are unique to Al systems. The existence of
prior opcrational automation of the ATO planning process could have served to clarify or
solve these problems and to simplify the TEMPLAR development.

1.2.5 Deliverables
TEMPLAR produced the following deliverables in addition to this Final Report:
User’s Manual

Maintenance Manual '
Aocession For

Test Plan NTIS GRARI W
DTIC TAB d
Interface Control Document Unannounced O

Justification o

Functional Description

By
cp: . $stribution
Data Base Specification ) { Distribution/ __ _ J
m Availability Codes
ISRl e
1

Page 4




Interim Technical Report
Design Plan

Sce the next section, 1.3 Project References, for complete references for these
documents.

1.3 Project References

Following are the documents applicable to the history and devclopment of the
TEMPLAR project and are listed for information purposes only. The primary documents
are the Interim Technical Report, Design Plan, Functional Description, User’s Manual and
Data Base Specification by TRW.

TEMPLAR (Tactical Expert Mission Planner), was developed by TRW Defense
Systems Group for the U.S. Air Force, Rome Air Development Center (RADC). TEMPLAR
is the first major Air Force application of Artificial Intelligence (AI) technology to produce
an Advanced Development Model (ADM) of a decision aid which will be demonstrated by
the operational forces. TEMPLAR builds on technologics demonstrated by RADC, the Mitre
Corporation and the Defense Advanced Research Projects Agency (DARPA) to incorporate
natural language understanding, constraint and cxpert system based planning, and advanced

man-machine interface (MMI) technigques

The TEMPLAR project sponsor was the Air Force Rome Air Development Center
(RADC). The end users wili be mission planners from the Air Force Tactical Air Control
Centers (TACC). The system was installed at the Battic Management Laboratory at RADC,
Griffiss AFB, NY, the Ninth Air Force at Shaw AFB, SC, and the Human Resources
Laboratory (HRL) at Wright-Patterson AFB, OH.

a. Project Request

Tactical Expert Mission Plaaner (TEMPLAR), RFP F30602-85-R-0104, issued
10 April 1985.

b. Techaical Documentation

*Uscr's Manual (Final), Tactical Expert Mission Planner (TEMPLAR)", CDRL
A007, by TRW Defense Systems Group, dated November 9, 1988.

"Maintenance Manual (Final), Tactical Expert Mission Planner (TEMFLAR)",
CDRL A012, by TRW Defense Systems Group, dated October 1988.

"Test Plan (Final), Tactical Expert Mission Planner (TEMPLAR)", CDRL




A009, by TRW Defense Systems Group, dated August 1, 1988.

“Interface Control Document (Final), Tactical Expert Mission Plauter
(TEMPLAR)", by TRW Defense Systems Group, dated June 1, 1988.

“Functional Description (Final), Tactical Expert Mission Planner
(TEMPLAR)", CDRL A006, by TRW Defense Systems Group, dated 18 March
1987.

"Data Base Specification (Final), Tactical Expert Mission Planner
(TEMPLAR)", CDRL A0!1, by TRW Defense Systems Grouy. dated October
1987.

“Interim Technical Report (Final), Tactical Expert Mission Plunner
(TEMPLAR)", CDRL A005, by TRW Defense Systems Group, dated 15 October
1986.

"Design Plan (Final), Tactical Expcrt Mission Planner (TEMPLAR)", CDRL
A004, by TRW Dcfense Systems Group, dated 3 July 1986.

"Tactical Air Force Headquarters and Tactical Air Control Center”, TAC
Regulation 53-45, dated 26 October 1984,

*"TEMPLAR Design”, RADC-TR-84-134, by the Advanced Information and
Decision Systems (ADS), dated June 1984.

"Headquarters/Tactical Air Control Center USCENTAF", Regulation 55-45,
dated 20 December 1985.

"Tactical Air Intelligence Handbook", FAC Manual 200-10, dated April 1969.

"An Introduction to Air Force Targeting", AF Pamphlet 200-17, dated 11 Oc-
tober 1968.

"Acrospace Operational Doctrine, Tactical Air Opcrations - Counter Air, Close
Air Support, and Air Interdiction Handbook,” USAF, dated 2 May 1969.

¢. Documentation concerning related projects.

"KNOBS -- The Final Report (1982)", R. H. Brown, J. K. Millen, and E. A.
Scarl; RADC-TR-86-95, August 1986.

"KNOBS Architecture”, J.K. Millen, C. Engleman, E.A. Scarl and M.J. Pazzani;




d.

(Draft), no date.

*The KNOBS System®, E.A. Scarl, C.Engleman, M.J. Pazzani, J. Millen, to ap-
pear in & book edited by W. Zachary, ~1985.

*KNOBS: An Integrated Al Interactive Planning Architecture®, C. Engleman,
J.K. Millen, E.A. Scarl; AIAA Computers in Aerospace Conference, Hartford,
Coan.

*MITRE/INTERLISP FRL Reference Manual®, (Draft), dated December 1979.

Other manuals or documents that constrain or explain technical factors affecting
project development.

*Constraint-Directed Search: A Case of Job-Shop Scheduling®, Carnegiec Mclion
University pubiication CMU-RI-TR-83-22, by Mark §. Fox, dated 13 December
1983.

Standard or Reference documentation
(1) Programming conventions.

*RADC Computer Software Development Specification General Specification
for ", Specification No. CP 078779610CE, dated 30 May 1979 and Amendment
No. 1 to CP 0787796100E, dated 14 April 1981.

(2) DoD or Federal standards.

"Automated Data Systems (ADS) Documeatation Standards®, DoD 7935.1-STD,
dated April 24, 1984.

"Economic Analysis and Program Evaluation for Resource Management®,
Department of Defense Instruction, Number 7041.3, dated October 18, 1972.

(3) Hardware Manuals and System Support Documentsation

Knowledge Craft Manual Guide, Version 3.1, Carnegic Group Inc., 2 vols,
dated 18 August 1986.

Knowledge Craft Installation Notes and Release Notes, Carneg’* Group Inc.,
Version 3.1 for Symbolics 7.0/7.1, dated 17 July 1987.

Language Craft Reference Manual, Version 3.1, Carnegic Giw.wi sac., dated 7
December 1987.




Symbolics Manuals, Release 7.0/7.2, Symbolics Corp., vols 0 to 10, dated June,
July, August 1986, Februasy 1988.

Symbolics Software Scrvices Technical Bulletin, Genera 7.2, dated Junc 1988.

*ULTRIX-32 Programmer's Manuai®, Digital Equipment Corporation, Binders
I, II, HIA & IIIB, dated May 1984,

*ULTRIX-32 Supplementary Documentation®, Digital Equipment Corporation,
Vols, I - 111, dated May 1984,

1.4 Terms and Abbreviations

AA AntiAircraft

AAR Air to Alr Refueling

ADM Advaunced Development model

Al Air Interdiction

AIRDEF Air Defense

ARCT Air Refucling Contact Time

ATO Air Tasking Order

AWACS Airborne Warning and Con(ro! System

BAI Battieficld Air Interdiction
BE Basic Encyclopedia

CAD Computer Aided Design

CAFMS Computer Assisted Force Management System
CAS Close Air Support

CDRL Contract Data Requirements List
COMUSCENTAF Commander US Central Air Force
CoPs Combat Operations Planning

DCA Defensive Counter Air
DOD Department of Defensc
DS Defense Suppression

EC Electronic Combat
Enemy Order of Battle o7 Electronic Order of Battle

Estimated Time¢ On Target

Forward Edge of Battle Arca




FEP
FLOT
FOB
FP
FSCL

G&A

HEL
HWY

ICD
INT

KB

LENSCE
LMFS

MB
MIL
MMI

NL
NTC

OB
OoCA
OPNS

PAA
PCC
PD

POL

RADC
REC
RWY

SCL
SEAD

Front End Processor

Forward Line Of Troops

Friendly Order of Battle also form object
Force Protection

Fire Support Coordination Line

Guidance & Ailocation

Helicopter
Highway

Interface Control Document
Interdiction

Knowledge Base

Limited Enemy Sitvation Correlation Element
Lisp Machine "ile System

MegaByte
Military
Man Mazachine Interface

Natural Language
Night Targeting Cell

Order of Battle
Offensive Counter Air
Operations

Possessed Aircraft Authorized
Package Checker Cell -
Probability of Destruction
Petrocleum, Qil, Lubricants

Rome Air Development Center
Reconnaissance
Railway

Standard Copnfigured Load
Suppression of Eremy Air Defense

Page 9




SIF

TAC
TEMPLAR
TFT
TOC
TOT
TPW

UM
USAF

Selective Identification Feature

Tactical Air Command

Tactical Expert Mission Planner

Time off Target

Table of Contents also Tacticai Operations Center
Time On Target

Target Planning Worksheet

User's Manual
United States Air Force




2.0 SYSTEM IMPLEMENTATION
2.1 'Mixed Initiative

TEMPLAR had a requirement derived from KNOBS to support interleaved plann’ng
by the user and the system, a process called mixed injtiative planning. In contrast to batch-
like processing, mixed initiative planning gives the user control over the scope of what is to
be autoplanned and, more importantly, gives the user the option to tune the intermediate c
results of the autoplanner before invoking the planner again.

Mixed initiative planning was successful in TEMPLAR for the same rcasoans as in
KNOBS: TEMPLAR conducts planning by filling in forms, and it matters not to the
planning process whether the user or the autoplanner fills in the form. By designing the
autoplanner to distinguish data which are user-entered (and thercfore sacrosanct?) from
those which are autoplanner-generated (and thesefore fair game), any number of iterations
of the planning may be initiated.

Fields on forms in TEMPLAR map to slots in frames -- that is, every field on every
form is attached to exactly one slot in one framed. TEMPLAR retains knowledge of what e
has been filled in by the user (vs. the autoplanner) by marking frames as user-owned or - v
autoplanner-owned; all slots in a frame so marked acquirc that property. ) l.".

This notion of ownership marking at a higher levcel than the slot reflects the concept
that the value in a slot is only valid in some larger context. For example, an SCL of 4M84
is only valid for a certain combination of mission parameters including aircraft type,
target, etc. In the design of the TEMPLAR Knowledge Base, such related sets of slots were
grouped into a frame of a class reflecting that context, such as MISSION. Marking the
entire mission as user-owned when any slot in the mission is filled in by the user, and
clearing user ownership only when all slots in the frame are cleared, captures the idea of
user or autoplanner ownership of the complete set of related mission data.

This idea of grouping slots into frames reflecting user-visible concepts imposes a _
constraint on the designer of the Knowledge Base. Since the groupings of slots into frames s

Sacrosanct is used here in the context of sacred or inviolable.

Very loossly speaking, s frame is analogous tc & record in a data base and s slot is analogous to » field in a
record, although the enalogy fails to expresr the additional power provided by frames and slote relative to
traditional data bases. To illussrate frames and slots, in TEMPLAR a common frame is one to represent »
single mission. Slois in that frame contain data defining the unit, sircraft type, number of aircraft, 8CL, call

sign, mission number, owning package, and many other items.

Page 11




December 22, 1988

determines the scope of what the user marks as user-owned by entering data, the designer
becomes constrained to organize the Knowledge Base such that the resulting groupings are
useful from both 8 user and a TEMPLAR implemeniation perspective. In practice, this was
never & problem -- common frame classes in TEMPLAR include missions, Ta.get Planning
Worksheets, and other conceptual ohjects which are both familiar to the user and of a level
manipulated by the autoplanner. So close is this correspondence that the TEMPLAR
mechanisms for forms implementation is able o rely upon the equivalence of frames and
user-visible groupings to implement repeated form structures and most of the key ficld-to-
slot linkages.

There are four distinct planning modules in TEMPLAR:*

0 The package pianner, which generates mission lines on Target Planning
Worksheets.

The flow planner, which generates mission lines on unit schedules for CAS and
DCA missions.

The air-air refueling planner, which generates mission lines on Refueling
Planning Worksheets.

The mission line planner, which fills in mission number, call sign, SIF code, and
other information on existing mission lines.

Because of the diversity in the design of these four planning mechanisms, we
decided to make the recoganition of which slots hold user-owned values and which slots were
fres for autoplanning the responsibility of cach individual planning module. As a result,
recognition of user-owned slots is programmed into the planners (and somewhat ad' hoc)
rather than automatic or the result of a broad architectural decision. This decision turned
out to be correct, however, since the ways in which the planners deal with user-owned
information differs considerably.

o The best infegration of user data and automatic planning is in the package
planner during its depth-first tre¢ walk for a single Target Planning Worksheet.
User-entered data is taken as the only enumerable values during the search, In
addition, when such information is available it can be used to guide the
candidate value enumeration functions for relaged slots,

This level of user/autoplanner integration was not possible in the other planners,

In TEMPLAR, a mission is a set of sorties all going to the same place at the sarne time with a common
objective. A package in the current implementation of TEMPLAR follows Ninth Air Force practice in that it
consists of attack missions against one or more targets ccmbined with support missions as rcquired for force

protection, defense supprension, electronic combat, and reconnaissance.




which are more algorithmic it nature than the classic scarch used in the package
planner. For example, the flow planner attempts to create a set of missions
meeting a sct of specifications detailing aircraft types, aumbers, TOT's, inter-
arrival times, etc. Incorpcrating user data into the flow plan implics adjusting
the flow to correspond to user-entered missions. The process of effectively
allowing for small variations in the user missions to still map into the flow plan
became cemplex, and so the implemented {Jow planner ignores (but does not
alter) missions planned by the user. Similar problems in the air-air refueling
planner causcd its design to plan around user-cntered fuel requirements or tanker
missions rather than to attempt tc integrate the user information tightly into the
tanker plan.

Mixed initiative planning is also assisted by TEMPLAR's provision of multiple levels
of initiation for the various autoplanner functions, ranging from planning one field
through planning one or more frames (c.g., mission lines, Target Planning Worksheets, etc.),
to planning the'entire ATQ. By providing the user with a finer degree of control than all-
or-nothing, it is possible to use the planner in only those situations in which the user
believes the system can contribute effectively.

The air-air refuciing pianner is an exception to this conirol scheme; ithe air-air
planner operates on an all-or-nothing basis. Additional algorithm work in that planner
would cnable it to have the same degrees of control as the other autoplanner components.
The SOW specifically prohibited looking at replanning, making changes to these restrictions
out of scope of the TEMPLAR contract.

Giving TEMPLAR the power to handle the entire ATO planning process did require
some impositions to be enforced. In particular, because changes made to setup data can
invalidate clements of the Knowledge Base setup during planning, TEMPLAR iwaposes some
restrictions on the order of events during planning. Essentially, these restrictions require
that certain scenario ¢lements be sctup before other sctup data, and that all setup data be
complete before planning begins. Some of these restrictions may be overly rigorous, such as
precluding movement of tanker tracks once planning is started. A review of the system
could verify that some restrictions can be removed; demoens can be provided to remove
others (such as the onc on tanker locations).

2.2 Enumeration and Ordering

TEMPLAR augments the model of planning via filling out forms with active
assistapce to the user. Included in the active assistance features are functions to provide
enumeration of values which may be entered inio a field, and functions which will provide
ordered recommendations for those values.

Page 13



As implemented, TEMPLAR extends the notion of cnumeration to include both blind
caumeration and intelligent cnumeration.

o Blind enumeration is driven of f of the name of the slot being filled in, and is
available nearly everywhere in the system. Internal functions attached to the slot
names are capable of returning either all the values which may be entered or, in
the case of fieclds with continuous ranges of values, suggested candidate values.
Blind enumeration is independcnt of the local or global coctext of the slot,
however, and so can end up presenting candidates which are invalid in context.

o Intelligent enumeration works by taking the blind enumeration values and
processing cach of them through the Formal Constraint Language constraints
attached to the slot. For certain slots, specialized inversions of constraints
directly implemented in LISP are also used. The surviving values presented to
the user are knowa to be valid in the context. The process takes longer than
blind enumeration, but produces better results.

o Ordering works by passing each of the values from intelligent enumeration
through the Formal Constraint Language preferences attached to the slot. The
resulting ordered set is presented to the user. In the current system, the ordering
process is not significantly slower than intelligent enumeration.

All three of these mechanisms appear to be valuable to users, and to be applicable
across the range of TEMPLAR planning functions. There are limitations on the availability
of intelligent enumeration and of ordering, simply because constraints and prefererces in
the Formal Constraint Language are not available everywhere in the system. Further effort
to define such additional constraints and preferences would extend the availability of these
functions, and would simultancously improve the iatelligence of the planning functions
driven off of the Formal Constraint Language.

The desirability of extending the delivered ADM to include more constraints and
preferences highlights one of the characteristics of TEMPLAR which we believe applies to
most operational-scope Al systems. Because the problem TEMPLAR addresses is so broad
and complex, it is not possible to do concrete, in-depth enginceriag of the Knowledge Base
with the users until nearly all of the manual-planning mode system functionality is
available. In the TEMPLAR deveclopment, this did not occur until approximatcly 6 months
before final delivery of the software, limiting the volume of knowledge that could be
inserted via the constraints and preferences. This bottleneck can be addressed in at least
two ways:

1. There should be a period of system evaluation with the users fellowing delivery




of the completed software®. This period should inciude support by the software

development team, and should at least have these objectives:
o Expanding and refining the system Knowledge Base.
o Training operational users in the use and administration of the system.

o Fixing problems uncovered under operational load not evident during
developinent test.

o Tuning system specd in areas which present problems for operational use.

The normal development schedule for documentation and software prototypes
should be re-evaluated for operational Al systems. In particular, the TEMPLAR
program emphasized too much documentation early in the program when concepts
and ideas were too fuzzy to be worth documenting extensively. As a result

sof tware prototyping to clarify those ideas did not start untii later than would
have been desirabie.

2.3 Automatic Checking of Evolving Plans

TEMPLAR provides automatic checking of e¢volving plans by examining each value
typed into a field on a form, A wide range of mechanisms accomplishes these checks:

0

Syntactic checkers exumine cach keystroke to determine if the input contributes
tc a syntactically legal input. Example: Times must be in HHMM format, with
the ranges for hours and minutes bounded appropriately.

Semantic checkers determine if the complete entry makes sense in the context of
the Knowledge Base. Example: An SCL name must correspond to onc of the
SCL’s known to the system. If the entered values does not match a known SCL,
the system querrics the user whether or not the entered name should be added to
the set of known SCL's.

Demons, which in this case are procedures triggered when a value is stored into
the Knowledge Base, check for and attempt to maintain internal consistency of
the Knowledge Base. Example: Demons are responsible for maintaining the
internal record of what airframes are allocated to which missions at what times,
and for notifying the user when a given subunit has been overtasked.

Constraints written in the Formal Constraint Language evaluate the input value
for compliance with restrictions imposed by good planning practice. For

To build an operational Al system as compared to an ADM there would also be s need for deveioprnent and

operation test and evaluation.




example, a constraint in the system checks that the aircraft type assigned to a
mission is suitable for the mission, and would waran the user if KC-135's were
tasked for package force protection.

Taken together, this range of checks provides the ability for TEMPLAR to do
extensive input checking. Adding constraints to the system, as discussed in section 2.2,
would cxpand the range of checks performed. As dclivered, the ADM does not include
enough constraints to climinate need for thorough review by skilled planners.

As implemented, the constraint mechanism does not distinguish between constraints
which test conditions spanning multiple plan elements (¢.g., missions) and those which have
only local scope (¢.g8. the constraint on aircraft type above). The assumption that constraints
all have global scope causes significant numbers of frames to be examined, and often
creates a severe paging load on the system which detracts from performance. Because most
constraints kave iocal scope, adding the capability to specify that characteristic could spced
operations considerably.

When a check is violated by a user input, TEMPLAR displays a popup window with
text explaining the preblem. For those checks based on the constraints, locality effects
provided by the constraint mechanism allowed cxplanations to be more usefully gencrated
from the log of failed and passed constraints for the value than from a complete
computational history.

2.4 Flexible Man-Machine Interface

The TEMPLAR Man-Machine Interface style of intcraction has proved to be
extremely effective in support of the user and his ability to get the planning job done
effectively. The fact thai the uscr can freely switch between the various forms of
interaction, between and even in the middic of commands, demonsirates the flexibility
which can be provided in a C3l system. Only in rare circumstances is the user locked into
a two- or three-keystroke sequence of command processing when such switching is
disallowed, and even then the user can abort (and thus bypass) the completion of the
command sequence if desired.

2.4.1 Natural Language

In general, a natural language input interface is not appropriatc in situations where
the users know their job because of its extremely low bandwidth. It just takes too long to
type English sentences (whether syntactically correct or somewhat abbreviated) compared to
how long it takes to type single-word commands, do single key-stroke commands or move a
cursor via a mouse. Natural language input interfaces arc appropriate where naive users

Page 16




without gknowiedge of the problem area can ask in their own terms about areas of the
system, e..ncr for gencral browsing or during training in the problem domain and the usc
of the system.

This picture is further exacerbated by the amount of computation required to handle
both a broad subset of English syntax and common language, and a large problem domain
which is rich in its internzl terminological refereats. Naturai language grammars of this
quality must be large and parsers are correspondingly overburdened. The TEMPLAR
natural language input interface has a mean response time of 30 secconds to effectively
parse a sentence. The coverage provided by the five grammars is large, but then so are the
grammars, themselves. In the final analysis, the parser simply does not have the horsepower
to process grammars of the size and complexity present in TEMPLAR at any reasonable
speeds -- something which was not foreseen in sufficient detail until the fifth grammar was
nearly completed (although there were early concerns about the problem which resulted in
the grammar structure being partitioned into the five modules).

The TEMPLAR users have the expertise to oerform their jobs efficiently and hence
a natural language input interface to the system is unlikely to be used even werce it to
provide an instantaneous response time. As a result, as the project progressed, less time was
devoted to polishing this interface and more time was devoted to supporting other aspects
of the Air Tasking Order planning problem. Consequently, while the decision tree
mechanism used to dispatch the indicated commands based on the parscd natural language
input was very effective and efficient, few TEMPLAR commands werc made accessible.
The decision tree was not fully populated, but treated rather as a proof of concept in the
final linkage in the natural language input interface to controlling the system. Also, the
natural language grammars and parser included both the ability to mix English words and
mouse pointing input and the ability to detect anaphoric references to objects mentioned in
earlier natural language input bascd on the type of that input. However, while these
features are present, they are not currently hooked up to the decision tree mechanism.

The English explanation of the Package Planner’s reasoning was output in the
Combat Plans terminology and was very effective, but it was also voluminous. An
autoplanning run of a full-up Air Tasking Order will typically produce 250 pages of
detailed explanation. This volume of output was cause for concern, but firstly it would be
difficult to cut down in size without risk of inadvertently misdirecting the user. Secondly
it was felt that the user would typically never analyze the bulk of the data, but rather pick
and choose the details of importance. The output of the explanation did scrve to slow the
Planner somewhat, but its performancc was adecquate to meet the necessary criteria. A
mechanism of duplicating the explanation in a file for later perusal was implemented, but
the invocation switch was not providcd at the user interface level (i.c., in the system as
delivered it is turncd off, but can be turned on by a programmer). It was unclear whether

Page 17

ST



this would be of aid to the users.

The English explanation of constraint violations and enumeration orderings was
effective. However, few constraints and preferences were implemented in the non-inverted
version which allows them to participatc in ¢xplanations. Both explanatory capabilities
used the same mechanism -- a straight-forward approach of using predeveloped textual
messages filtered by the context of the current situation. Where constraints and preferences
were implemented as inversions in order to bring to bea the much better execution
performance of the inverted style, explanation was unavailable due to the nature of the
preference inversion mechanism. It would be recasonable to provide a non-inverted version
for every inverted constraint or preference, and to support both explanations and enhanced
performance for each such pair of versions; however, while this was initially investigared,
it was not pursued.

The English explanation provided by the help mechanism for the active field of a
form was adequate, but the examples provided were not tied to the enumeration mechanism.
Had they been, the examples would have been more effective, and more closely reflect legal
choices given that they take into account the context of the situation.

2.4.2 Menus

The TEMPLAR svystem of menus allowed the user to control much of the TEMPLAR
functionality without overburdening the user with a massive selection at cach step of the
way. This was accomplished through several different hicrarchies of menu functionality.
The fixed form action menu (Jower right of each form) and variable form navigation menu
(upper right of each form) were effective in bringing the right sct of commands to the
screen at the right time. The TEMPLAR system of menus provides a particularly good
example of mcaus whose list of sclectable options/commands is tied to the current context,
thus in large mcasure putting the appropriate functionality at the right place and time.

The other hierarchies were typically two-level mechanisms where the top level weuld
serve to sclect major function classes and the second level would serve to select the
particular function of the ciass.

However, given the number of menus available within TEMPLAR, the branching
factor and number of levels in the hierarchy, in many instances even experienced users
occasionally had difficulty determining where a particular remembered menu selection was
within the hierarchy. A fast solutior to this, implemented for the forms navigation
hierarchy, was to provide two versions of a flat all-forms-shown menu. Each was, and
needed to be, scrollable due to the number of forms available in TEMPLAR. A second
solution which was analyzed and considered feasible, but was not implemented, was a user-
defined macro facility which would have allowed the user tc associate a specific keystroke

Page 18




to the selection of a specific form from anywhere within the navigation hicrarchy.

The map pull-down menus at the top of the color screen have proved too slow in
their responsc time. This is due to the factor of cight increase in the number of bit-plancs
which needed to be saved .1 order to preserve the map arcas under the pull-down menus.
To partially offsct this, many of the menus and other informational pop-up messages were
displayed on the B&W screen even when the user’s focus was on the color screen. In
retrospect, it is likely that all such temporary displays should be moved to the B&W screen -
- the increase in response time to reasonable levels more than offscts the momentary
distraction of the requiring the user to change his focus from one¢ screen to the other.

2.4.3 Graphics

TEMPLAR provides a very effective map graphics display system. The software
overlay approach was very flexible in economically allowing the selective erasure of
individual screen items. The use of object-based programming mixed with frame-based
programming was extremely successful. We used the Symbelics® native Flavors object system
rather than Knowledge Craft’s CRL object mechanism due to urusually poor execution-time
for the latter as an object programming support platform.

The fly-leaf corncr maps allowed cut and pastc opcrations and the ability both to
view multiple disjoint geographic regions and to view the same region at differing scales
and with differing iconic overlays. The icon highlighting via the mouse coupled with the
simultaneous display of the icon’s gco-object name on the status line allowed for quick
identification of objects in a cluttered cluster. The duplication of the B&W mouse-button
command line prompts on the color screen as well served to reduce disrupting change of
focus and consequent user distraction. The straight-forward point-grab-move map object
modification mechanism was simple and easy to use.

On the down side, the software implementation of map pan/zoom functionality was
too slow. To counter this, three different map display algorithms were implemented in
trying to remove the response-time sluggishness, but nonc of them was wholly satisfactory.
The final response time for a map zoom was approximately 30 scconds, but we feel that a
reasonable response-time should be on the order of 3 seconds or less. Unzooming was sped
up by caching the prior screcn contents or a stack prior to a pan or zoom, $0 an wnzoom
required only ubout 5 seconds. Only the map backgrounds were zoomed, the icons
themselves were overlaid on the background following its pan or zoom.

The algorithms invoived were:

1) an initial simple pixel replication which pro.vidcd a response-time in the
neighborhood of twelve minutes per zoom.

Page 19




2) a digital differential filter (DDA) adapted to two-dimensional scaling which
produced a fairly uniform 30 seconds per zoom.

3) a quad-treec implementation which was significantly slower at low magnifications
but became faster at replications of x16 and higher.

The quad-tree approach had two drawbacks. The first was that in order to provide
rcasonablc map background deteil we had provided two acales of map (the mechanisia is
built to handle more) and switched from the low resolution map to the high resolution
version when the magnification got high enough. This madc the quad-tree less effective
until the higher resolution map was finally magnified o x16 and over, an infrequent
occurrence. The second prodblem was that the quad-tree approach required many more
megabytes of storage, which further slowed system performance duc to paging and disk
storage requirements for the extra virtual memory invelved. We did implement a hybrid
approach where the DDA was used on low magnifications and we switched to the quad-trec
above a given threshold, but the second drawback to the quad-tree approach effectively
removed it from competition.

We could expect further improvements in the DDA if map pages were frozen in
physical memory before thec DDA algorithm began its replication, but this was not
implemented. Urrolling the innermost DDA loops might also buy some time, but this was
not investigated. The most effective approach would be specialized map hardware-assist for
boih the objéct iconic overiays and the pan/zoom functiopaiity. We decided that we could
not use the built-in color hardware pan/zoom due to 1) it is unavailable on the CAD color
hardware which was required for its flicker-free display, and 2) it replicates based on the
entire screen rather than by window. Additionally we would have to erasc the icons at
outdated screen-positions as well as repaint them, plus we would have to crase as well as
repaint the other informational and map windows on the color screen. The DDA algorithm
alse performs scale reduction as well as magnification, which is not supported by the
hardware. In fact, for one of our map backgrounds, the initial display is a reduced-scale
version of the low resolution map and the map’s full details only show up after the first
zoom.

Other minor issues also prescnted themselves after user-testing. We were limited as
to the colors we could display by the 8-bit CAD display limitation -+ 24-bit color would
allow a wider variation in displayable objects and color highlighting. We mention an 8-bit
limitation rather than include the extra 9th CAD bit-planc both because it is accessed via a
slightly different mechanism, and because we had decided to implement graphics software
which would run on any of the Symbolics’ color screens. The fonts used on the color screen
were a shade too small. A slightly larger more-readable font size could be employed, and
displayed in reverse video to make switching vision from the B&W to color text casier to

follow. Moving the mouse between the B&W and color screens would have been more




convenient witk an even simpier mechanism than the Symbolics’ built-in two-keystroke
command.

2.4.4 MMI Context

A variety of mechanisms were implemented in TEMPLAR to support context
scn © ity during MMI input. Each ficld of each form was tagged to know about the type
of expected for that field, so that both the "next character” typed into the ficld and
the final completed text typed into the field were separately validated to provide the
earliest possible feedback to the user on invalid entries to the fields. In addition, the final
ficld’s valuc was also processed through a semantic validation based on the current state of
the knowledge base. These validation efforts are in addition to any applicable constraints
which might influence the validity of the field’s value.

Contextual scnsitivity based on mouse focus is exemplified in several ways within
TEMPLAR. Both the map object icons and the form fields exhibited highlighting whea the
mous?e cursor was positioned over them. This reflected a mechanism to dynamically alter
the currently available sets of commands based on what the mouse cursor was over. A
sccond type of highlighting was displayed when a specific field had been made the focus of
activity, and here again yet more commands based on the particular ficld became available.
Automatic display of a map object’s name based on the currently highlighted map icon has
aircady been mentioned above, In addition to this, the geographic location is continuously
tracked and dispiayed for the user while the mouse cursor is over an exposed map.

While the user is working on the maps, the mouse-button status line provides
prompting help based on the stages of the current multi-keystroke command in progress.
Menus whose list of seclectable options/commands is tied to the current context of operation
proved to be effective and efficient. Some of these mechanisms were based on standard
Symbolics’ operating system mechanisms; however, most represent an additional layer of
design and implementation.

The ability to selectively inhibit entire classes of map objects as well as inhibit
individual map objects from appearing on a map display went a long way toward providing
the decluttering required for users to be able to easily perform their tasks. While user job
models proviced an effective way to inhibit users from accidentally modifying data outside
their scope, it now appears that extending the two decluttering mechanisms to provide
standard retrievable map tailorings tied to job models and, indeed, to individual users,
would serve the user even more effectively in decluttering the maps and focusing attention
on the task at hand.

Page 21

.-



2.8 Kncwledge Representation Modificatioas

TEMPLAR provides the ability to modify the knowledge base directly through the
Knowledge Craft Palm cditing facility. However, we deem the editing of the knowledge
basc structure extremcly dangerous at the user level due to the ability to inadvertently and
significantly detune the system, or to destroy key logical invariants upon which the system
depends (i.e., to destroy the logical consistency of the knowledge base). Effective
manipulation of the knowledge base structure requires both Lisp and Al programming experience
and an intimate understanding of the relationship between the knowledge base and the
Junctionality which manipulates it.

Certain types of objects, map objects for example, are modificd by the user in a
reasonable way through the Knowledge Craft Coconut editing facility.

The TEMPLAR Formsl Constraint Language provides the bulk of the material
needed for on-line Natural Language constraint modification, but the user interface
necessary to directly allow the users to change constraints was not hooked up. Again, such
user modification is considered extremely dangerous due to the ability to inadverteatly
detune the system. It would be moderately straighi-forward to provide a TEMPLAR run-time
constraint de finition facility through a form, but it is unclear whether domain knowledgeable
users would benefit from such a capability.

2.6 Mission Task Planning

TEMPLAR is able to plan all the mission typcs specified in the Statement of Work.
Four distinct planning approaches, discussed in section 2.1, were used to achieve this
capability. The nced for a varicty of planning mechanisms, a requirement not found in
KNOBS, is a direct result of the expansion to planting multiple mission types and planning
multiple plan elements simultancously. The need for the package planner to plan mission
lines on the Target Planning Worksheet is established. The package planner is most closely
derived from the technology in KNOBS, but incorporates a number of additional elements
to handle the problems imposed by needing to plan multiple clements. With what we know
now, the package planner could be stratified to permit a comprehensive integration of least-
commitment planning techniques with the depth-first walk. As is, the MMI mechanisms in
TEMPIL.AR can support user interaction with the abstract planning strata needed by such a
planner.

The requirements for the other three planners are explained below:

o The flow planner derives from the fact that CAS and DCA missions are not
scheduled to achieve a specific result over a specific target, but rather to provide
a level of airborne suppori in an area over a range of times. Repetitive depth-
first tree searches could liave been used to schedule these missions, but were not




required. Instead, a cyclic algorithmic process applics a relatively small number
of constraints on distances and availability in order to achieve the necessary
aircraft flow,

The flow planner operates from flow specification forms, which provide a set of
lines te input the priority, station duration, mission interval, numaber of aircraft,
etc. The planner processes lines independently in the order determined first by
stated priority, if any, and second by order on the form. For each specification
line, the planner fills in a set of slots (unit, aircraft type, ETOT, ETFT, and
number of aircraft under all circumstances; SCL, comments, and alert code if
required).

The planner bases its processing on the sortie flow allocation capabilities internal
to TEMPLAR. The unit and aircraft type chosen by the flow planner are that
which are in range of the area using the giver SCL (if any) and which have
sufficient available sorties at the proper time and which are closest to the target
area. The ETOT/ETFT arc computed directly from the values on the
specification linc. The SCL, if any, is taken from the input on the specification
line, and if supplied is used to constrain the selection of unit and aircraft type to
those which carry the given SCL. Because the number of combinations of unit
and aircraft type which ne¢ed to be tried is very small, the flow planner can
perform an exhaustive search once the legitimate candidates have been
identified.

The air-air refueling planner performs a great deal of algorithmic processing,
followed by a loop similar to that of the flow planner to finally ailocate aircraft
to fuel requirements. The sub-clements of the AAR plant¢r arc as follows:

1. Determine ATO-wide fuel requircments.

2. Group pre-attack tanker cells with their packages and form tanker
raissions for those cells.

3. Computc a reachability graph detailing which fuel requirements can be
reached by a tanker flying from prior refuelings.

4 Map tanker missions over the reachability graph to form a spanning set
of missions.

s. Allocate aircraft to tanker missions.

Despite the fact that it appears to make sensible planning decisions, the AAR
planner is, essentially, a first algorithmic implementation of an ili-defined
problem. It needs tuning to refine some of the planning ¢stimates it incorporates,
and needs validation of some of the heuristics incorporated into its graph
algorithm. It also needs more accurate fuel flow models than were available for

Page 23



implementation in TEMPLAR.

In addition, the size and processing requirements of the AAR planner are such
that, taken by itself, it could be implemented on & 386-class portable PC. This
would provide a powerful tool for replanning on-board the AWACS.

o The PCC Planner fills in the mission number, call sign, SIF code, and mission
roie (¢c.8.. AR, DCA, etc.) information into mission lines. The planner is
constrained t9 compose these values according to guidelines published in the
Krnowledge Book part of the TEMPLAR Maintenance Manual; the implementation
of those guidciines is implicit in the code for the planner. Given the ability to
compose valid field values, the planner uses a simple allocation process to
dctermine which of the valid compositions are available for the necessary time
interval, if any. If none of the compositions arc available, new efements are
drawn from 2n avaiiable pool and uscd to compose new value resources.

For example, cali signs are stored by call word, where a given call wozd is
assigned to and tracked on the basis of a subunit. For ¢ach call word at the
subunit, the times at which ¢ach call sign composed from that call word is
available are recorded. When a new block of call signs is required for missions
of that subunit, the set of existing availability intervals is queried. If a suitable
block is identified it is uscd, elsc a new block is opcned.

2.7 Knowledge Base

The TEMPLAR development clearly demounstrates that frare-based programming
works well in dealing with large-scale models of the world. The multiple interpenetrating
frame hicrarchies® provided more than adequate modularity to control the growth of the
world model. The frame-based approach provided considerable flexibility during
development in the ability to alter the world model to take advantage of new information
about the Air Tasking Order problem domain as it became available.

The TEMPLAR knowledge base is extremely large, consisting of 50,000 to 100,000
frames. The modelling achieved by the TEMPLAR knowledge base is, in detail and in
interaction, several orders of magnitude beyond that which can be handled by the current
state of the art of rule-based systems. In spite of this, transisnt frames are rarely built. In
retrospect, now that the bulk of the domain krowledge has becen acquired and digested, it
looks as if the knowledge base in tzrms of frames instantiated and hicrarchies dynamically

That is, from one perspective the directed graph which is the knowledge base consists, from one perspective, of

multiple trees rooted at various key classes {e.g., mission, target-mission-group, map-object, etc.). Relations

form the arcs of these trees. Becausz one frame will often be a member of mors than one tres, the text refers to

these connected trees as “multiple interpenetrating hierurchiss”.

Page 24



modified is nearly constant. Therec has been scrious consideration given to an Al
development methodoiogy in which the near-static frame-based world model of a problem
domain such as TEMPLAR is initially developed in Lisp and later converted to an
cquivalent knowledge base representation in 8 conventional language. Such a methodology
seems feasible as long as the {inal knowlcdge base is, indeed, fairly static in nature.

The layering of TEMPLAR-internal objects, static domain knowledge, long-term
slow-changing domain knowlecdge, and daily-changing domain knowledge was very cffective
as an additional approach to controlling knowledge base modularity and growth. The
carliest laid parts are still rough. Due to its nearly continuous growth over several years
and duc to several course corrections which took place during that growth, there arc
different areas of the knowledge base which achieve the same effect through different
mechanisms and styles.

An carly and inadequate representation for time led to a later upgrade of the
representation, but this generated several deep-secated bugs in the temporal reasoning which
were only lately discoversd’. The time representation was also a bottleneck in speed of
execution of many aspects of the resource accounting performed by TEMPLAR. Special
attention could be paid to designing for faster execution rather than simplicity now that a
working version exists.

The TEMPLAR system takes a2 bipartite view of the knowledge base. There is the
world modei itself and then there is the paralle]l knowledge basz which maintains
knowledge about how to display geographical objects on the map. Not all of the objects
modclled within TEMPLAR are map displayable, of course. Those which are each have a
dual map representation frame linked into its display hierarchy. This separation of the
world model from the information required to display it on a map has proved to be among
the most successful partitioning in the system. A similar partition with respect to the
objects displayed on the B&W forms tutns out not to have been necded duc to the fact that
all fields which are "windows" onto the knowledge base are displayed alike. The key, here,
was the multiplicity of differing display techniques which were required for the map
iconic display.

TEMPLAR uses frames to model its own internal computational objects, such as the

In particular, the initial representation of time did not adequately distinguish time intervals from absolute
times, and did not adequately support the representation of ATO periods which inziuded midnight within the
period. When the changes were made to resolve these problems, a number of difficult problems were uncovered
which were due to programiners having referred to ¢!ements of the time dsta structures directly rather than
through access macros. Because the standard access tnacros had not been used, the code did not properly

respond to the representation change.




B&W screen forms, as well as real-world objects such as aircraft and airbases. The frame-
based approach allowed us to casily add meta-knowledge, a layer of introspective
knowledge about the TEMPLAR processing itself, to control the system. Such reasoning was
used, for example, to ensure knowledge base consistency and integrity across workstations
in order to allow multiple users to be planning aspects of the same Air Tasking Order
simultaneously.

The TEMPLAR knowledge base used a wide variety of frame inheritance types. In
rare circumstances when the inheritance was performed many times and included
computationally expensive deductions, the addition of a caching/invalidation mechanism
served to provide the performance needed.

The Knowledge Craft CRL context mechanism proved to be inadequate in
controlling the fine detai; contextual merging recquired for TEMPLAR. Hand-tailored
mechan 'sms were built jn its stead.

Also, while using Knowledge Craft CRL as an off-the-shelf frame language platform
initially saved some development time, the lack of adequate software support for CRL in
‘dentifying and €ixing bugs and in lifting useful features from within CRL up to the CRL-
user level, coupled with our inability to cbtain a source code licensing agreement for CRL,
forced us to both bypass CRL mechanisms in some instances, and to wire changes around
other CRL mechanisms to prevent unwanted behavior.,

2.8 Plarcuing

Svstem-wide, TEMPLAR can mect the performance requirements in the SOW,
although performance of the planner clearly depends on how well the weaponceering
matches the available resources. Pathological cases can undoubtedly be constructed which
scverely extend the time to plan. The performance requirements are poorly defined,
however, and it is not clear how weli they correspord to the needs of the operational user.

o It is unlikely that operational users will request the system to plan the entire
ATO. Accordingly, system performance in terms of pianning speed and quality
for specific planning tasks is much more significant than a measure of overall
ATO planning speed.

The user/sysiem interaction performance is also important, since it is a
combination of user and system actions that will produce a combined ATO.
Measures of the combined user/TEMPLAR system should be developed and
evaluated.

TEMPLAR requires approximately 200MB to store the ready-to-run image for the
Blue Flag or CalNeva scenarios. Of the storage required by internal data structures, we




estimatc that possibly as much as two thirds of this volume is required for storing meia-
slots in the Knowledge Craft CRL representation. With the perspective of having complcted
the software, it is clear that the representalion provided by CRL is much more general than
is required for TEMPLAR, and that a replacement for CRL sufficient for TEMPLAR
purposes could be written with the following characteristics:

o Be interface compatible, not requiring changes to the TEMPLAR software (with
the exception that the Natural Language interface, which relies on much more of
CRL than does TEMPLAR, would be removed).

Bce smaller and faster than CRL, possibly by a factor of two. This might be
sufficient to permit fuli-scale operation of the softwaic on a Symbolics 3650
having only on¢ 368MB disk.

Provide full source code and data rights to the Government, enhancing
maintainability of TEMPLAR.

2.8.1 Autoplanning

We found that the KNOBS style of automated mission planning based on filling in
the slots of a single frame was adcquate to the smalier scale problem on which it was used
but required a meta level of processing to deal with the Air Tasking Order problem domain.
The number and Guality of interdependencies among the various packaging problems, the
criteria in determining an adequate choice in planning an ATO, are severe. Some of the
interdependencies taken into account within TEMPLAR involve the following issues, for
example:

0 Dbetwcen the attributes of a mission: unit, airframe, preferred unit role, airframe
role change, ordnance load, drag

between the missions for a target: attack, attack designation, force protection,
defense suppression, electronic combat, reconnaissance

between targets which are packaged together: target co-location, enroute threats,
air-to-air refueling locations, offload rate and quantity, aircraft-boom ratio,
whether to pursuc economies of scale®

The level of package planning expertise within TEMPLAR is difficult to judge.
Some aspects of the planning process as implemented in TEMPLAR arc fairly naive, while
others are quite claborate. Additionally, as with many automatsd systems, the raw cross-

The decision of whether to package a target with another target, and if so with which target, is particularly
difficult. Economies of scale occur when support missions can be shared among the attack missions for multiple
targets, but the decision to package two targets together can result in many problems, not the least of which ie

insufficient tanker capacity.




correlative bookkeeping which TEMPLAR does accurately and quickly is quite beyond
ordinary manual skills,

Complex, rare cases were not addressed. For example:

0 no attempt is made to add tankers to the standard flow (this is left to the AAR
graph-based planner)

0 no attempt is made to deduce a need for a massive air effort (nor is the
informzation to do s0 present), so no gorilla packages are created

Certain practices within TEMPLAR, which are performed apparently naively,
actually reflect an obscure ordering in the current ¢expert approach due to its present
manual nature in handling the large amounts of information. For example, any package
with enough unused offlocd and boom capacity will have a RECCE mission added to it
whether it makes sense to send a RECCE mission in with the force package to the given
target arca or not. No further knowledge other than the RECCE mission will *fit" is used
in its planning. The current expert practice is actually to lay in these missions blindly and
use them as AA. )iacec-holders to ensurc that fuel and boom capacity are set aside. Later,
the missions are reshuffled, when the gencral picture of the targets to be hit has settled
down and can be manuazlly cross-correlated to the reconnaissance requests of the day.

An carly prototype of a least-commitment planning mechanism (present during the
second, third and fourth incremental deliveries) which handled a mildly extended version
of the KNOBS planning problem proved seriously deficient in terms of speed of execution.
It is not active in the final TEMPLAR declivery. It is unclear whether such an approach, by
itself, could prove . :essful in the full-up problem domain. However, as a quick rough-cut
plan generator for = identification of resource bottlenecks, we feel that a least-
commitment plannic  sproach can be used to advantage. Based on our experiences, both
least-commitment ana stratification should be considered in future package planners.

Numerous alterati 1s were made to the final package planner due to knowledge
which became available near the end of project development cycle. While the planner is
fairly effective, it is nc: . .car whether the plan produced by the package planner is sufficiently
robust under all, and especially pathological, planning situations®. A serious impediment
during the development life-cycle was lack of access in the early and middle stages of the

Note, howevar, that this issues applies only to decisions made by the autoplanper. The mixed tnitiative
planning capability permits any and all dacisions to be made by the nser, and permits those decisions to be
made at any time. Conssquently, cases which exceed the ability of the autcpianner are always subject to
resolution by human planners; therefore when taken as a total capability, TEMPLAR does not have the
limjtation cited.

Page 28



project to the Air Tasking Order planning experts. This adversely affected the depth of
understanding of the ATO probiem, and led to significant delays in the development of the
important areas of the knowledge base and the various autoplanners. Late during the
project some limited access was made available. However, while this access provided a
wealth of detailed information, it also rcsulted in significant revamping of these areas of
the system.

TEMPLAR was designed in such a way as to never overrule a user’s decision.
Related fi~lds on forms were grouped into frames and each frame was tagged as to whether
it contained a field which had a user- or autoplanner-supplied value. If such a frame was
tagged as user-owned, only empty ficlds would be candidaies for planning. As such, when
autoplanning was invoked, the package planner would attempt to complete a partially filled
in user plan by fiiling in ields around thosc the user had filled in, and by replacing values
in ficlds previously filled in by the autoplanner. This feature is termed mixed-initiative.
If some partially completed plan component was not able to be compieted, TEMPLAR will
g0 on to attempt to complete its own version of the component, leaving the partially
complete version in the original user’s state. In this way, TEMPLAR is able to bypass user-
enforced inconsistencies in attempting to achieve a coherent plan.

The package planner organizes its development of attack packages into several
phases. Overall, those phases are the following:

1. Caiculation of estimates of aircraft usage assuming that each TPW reccives its
first weaponeering choice for its first DMPI.

2. For each TPW, calculation of the sct of viable weaponeering/tanker area
combinations (¢.g., from which tanker areas, if any, can aircraft of the type
specified in weaponeering line number 1 reach the tanker and the target from
the bases at which they arc stationed?).

3. For each TPW, calculation of the order in which the viable weaponeering optiens
will be examined, assuming that the tanker area closest to the target is used.

4. For cach TPW, each of which represent a nominated target, calculation of the
other nominated targets which represcnt threats to aircraft enroute to the target
at hand. This partial ordering is then combined with the target priorities, the
day/night specification, and user-entered ETOT’s, if any, to produce a total
ordering on the set of targets to be planned. Each target also receives an interval
which represents its earliest and iatest permissible ETOT.

Once these preliminary decisions are madel®, the TPW's are then planned

10 Technically, these four steps plus the final detailed planning would be the basis for » fully stratified planner




individually in the order determined in step 4, which may vary from the strict priority
order to reflect threat dependencics. For each TPW, the following steps are carried out.

1. Attack missions are planned first on the TPW. The first (in the sense computed
above) weaponeering option which meets all constraints is used. When tanker
assets are assigned, the planner attempis to combine the attack on the “current”
TPW with that on a TPW already planned for which the targets are sufficiently
close and for which there is adcquate fuel on the tanker to support the
additional missions.

2. After the attack mission is planned, laser designator attackers are added if
required by the attack weapons load.

3. Force protecticn missions are then assigned based on the degree of air-air threat
expected. The missions scheduled must fal! within per-package limits on
estimated fucl offload from the pre-tanker, and can only be scheduled if
sufficient sorties are available.

4. Wild Weasel missions are scheduled if terminal area threats are expected which
can be defeated by such aircrafi. These missions, and the EC and RECCE
missions planned next, are also subject to availability and fuel constraints, and
are not planned if those constraints are violated.

5. An clectronic combat mission (EF-111) is scheduled if adequate Wild Weasel
support was not available.

6. A rcconnaissance mission is scheduled if fuel is available on the tanker and
sorties arc available. These missions are placeholders, intended to reserve fuel on
the tankers (necessary since the recce target list is not expected to be available
until somewhat after package planning is complete). Later in the planning
process, these dummy recce missions are stripped out and the actuai missions
responsive to the recc. target list entered.

To illustrate the idea of threat and ETOT dependency, suppose that ar airbasc is the
priority 1A target, and a missile site immediately in front of it is the priority 1D target.
Further, suppose that the missile site has been specified with an ETOT of 0730. Because
the missile site threatens aircraft attacking the airbase, the missile site will be planned
before the airbase, violating strict priority order. Further, the ETOT for the airbase will
be restricted to be after 0730, the fixed ETOT for the missile.

It is a straight-forward procedure to perform an autoplan rua, change some of the
governing information (¢.g., the weaponcering options for the attack mission), and reinvoke
the planner again to sce the differences in the resulting plan. In addition to the planning

using least-commitment planning approaches.




forms, there is a group of setup forms which provide initializing information about the
static and slowly changing aspeccts of the war. Once planning has begun, thesc forms
cannot be modified -- to prevent krzowledge base inconsistencies. There is nothing unusual
about these setup forms which prevents the user from being able to change the information
thercon, but the required implementation to forward those changes to the alrecady planned
portions of the ATO is not present in TEMPLAR. Had the rcquircment to avoid the
*replanning” problem not been levied on TEMPLAR, the required work could have been
done. Replanning in the face of changes once the plan has been partially built is not a
difficult problem, but it is a pervasive one. Parts of TEMPLAR handle what might be
called replanning while other parts do not. The mechanisms needed for replanning support
have all been proven to work. In the programmers opinion, the cascade of changes needed
to handle replanning based on & change in some precondition is straight-forward to
implement {albeit large-scale) and is implementable in a8 fundamentally tractable fashion in
a high-performance planning system.

Of the four autoplanners implemented in TEMPLAR, only the package planner
includes a generate-and-test component as can be scen from the planner explanations. In
reality, very little is generated and tested due to the amount of knowledge from the
problem domain incorporated into the planner itself. While extensive use of meta-
knowledge is made during planning, no one simple generalized control mechanism or
paradigm stocd out as both sufficiently capabls of handling the complex knowledge
interrelatiorships and sufficiently fast to mect the performance criteria required. The Air
Tasking Order planning domain has been categorized as of the "stereotypical planning
problem" type. Nonetheless, there are significant aspects of other problem types presznt.

The knowledge gained during the development of TEMPLAR with respect to the
issucs of planner generality versus Al planning "paradigms” versus the "type” of planning
problem under consideration has led us to the following conclusion. Specific planning
"paradigms" have been associated with specific types of planning problems. We believe that
for any sufficiently rich planning problems (and by this we mean prob'cms which require
both complex knowledge as opposed to complicated bookkeeping and w.ich include bodies
of knowledge in which people must be trained in order for them to perform well), these
problems will all be seen as "stereotypical planning problems”. Only the smaller simplified
knowledge-poor problems can legitimately be viewed as of other problem types. Single
paradigm approaches are seen, in this light, merely as higher-level weak-methods approaches
in which the domain knowledge is forced willy-nilly into the chosen paradigmic mold. Our
recommendation is to be eclectic, to I'it the various paradigms to the problem and be ready
to bend them as necessary -- let the knowledge be the guide.

Page 31




2.8.2 Supply Trackiag

TEMPLAR defines a hierarchy of weapons assemblies. Weapons themselves, which
have no tactical unit association by type, are grouped into loads. A load is a set of
weapons, with the quantity of each weapon in the load specificd. A typical load might
include a set of bombs plus the racks needed to mount them (note: racks, pylons, ctc. are
considered weapons in this context). Every load is associated with a tactical unit.

Loads are then grouped into SCL’s. A typical air-air SCL might consist of two loads,
onc for AIM-7s and one for AIM-9's. Each SCL specifies the name and quantity of the
loads it includes. SCL's arc also associated with tactical units.

Mission ordnance is specified by filling in the SCL ficld for the mission. Supply
tracking demons in TEMPLAR then process the hierarchy under that SCL to determine how
many units of every expendable weapon in the SCL are being consumed by the mission. A
report providing totals by weapon type is available as a form.

Forms are also available to enter availability information for weapons by airbase.
Current weapons usage by airbase is also reported on those fo ms. The user is not informed
when more than the available weapons at a base have been consumed during planning.

2.8.3 ATO Presentation

The ATO is visible in TEMPLAR via the extensive number of forms implemented,
Most of the detailed mission data are available in the unit schedule forms, for which there
is a command to display and print all non-empty unit schedules. Summary data are
available in other forms. The data on the forms are kept current via a {lexible forms
display system, including the Forms Editor and Forms Compiler tools plus extensive MMI
software to provide and update form-to-Knowlcdge Basc links. That software also makes
uprates and changes to the forms straightforward. The tradeoff for that flexibility was
that forms require extensive computation to build the first time they are displayed, leading
to a sctup requirement that forms should, to the maximum extent possible, be pre-built and
saved to disk to enhance the speed of the system. As with most areas of TEMPLAR, tuning
of the forms construction software for additional speed is possible.

2.9 Context Mechanism

The context, or "What If* mechanism in TEMPLAR is applicable to neurly all
functions of the system rather than being restricted to developing force packaging options.
Contexts (copies of frames which shadow the original versions) ir the frame system
provided the basis for this functionality. The context merge tools of CRL were completely
inadequate, however, providing no user control, no user visibility, no ordering control, and




no demon firing. In order to solve these problems, keep the knowledge base consistent with
the network, and provide control/visibility, it was necessary to write software to perform
context merge at the form ficld level.

2.10 Job Models

Job models in TEMPLAR are implemented using both a frame hierarchy and the
LISP machine logir process. The user name and specialized initialization actions (including
sctup of default printer access) is done via LISP machine login. Controls on forms
accessivility, KB editor access, and other TEMPLAR-specific features are recorded in
frames; the siot values arc ¢xplicitly interrogated by the TEMPLAR software providing
associated functioas.

User tools to edit, create, and destroy job models would be useful, as would the
addition of keystroke mar:us, display specifications, and map window setups.




3.0 TEST AND EVALUATION
3.1 Techsical Evaluation Testiag

The technical cvaluation testing was performed as a part of the Phase 11l portion of
the TEMPLAR contract. This testing was performed at TRW's Al laboratory, Systems
Engincering and Development Division. The technical evaluation testing consisted of
testing the capabilitics of the TEMPLAR ADM against the technical goals as defined in
scction 4 of the "Test Plan (FINAL), TEMPLAR", CDRL A009, dated August 1, 1988.

3.2 Dem;ntntlon

As a result of contract changes only one demonstration was required. This
demonstration took place at RADC the week of October 18-21, 1988. The demonstration
consisted primarily of demonstrating capabilities not previously delivered or seen by the
Government. The major capabilities demonstrated included the package planner, which
replaced the previous prototype Least Commitment Planner, the flow planner, the air-to-air
refueling planner, and the mission clement planner. Also demonstrated were the job models,
the CAFMS and LENSCE simulated interfaces, enumeration, ordering and constraint
checking. Other capabilitics demonstrated were portions of the technical goals as defined
in section 4 of the "Test Plan (FINAL), TEMPLAR", CDRL A009, datcd August 1, 1988.

3.3 Fiaal Acceptlance

The final acceptance test took place at RADC the week of October 18-21, 1988. The
acceptance test followed the System Acceptance Test Description, section 7, of the "Test
Plaa (FINAL), TEMPLAR", CDRL A009, dated August 1, 1988. Sincc the demonstration
preceded the acceptance test at RADC it was not necessary to rerun the demonstration.

Page 35



4.0 SYSTEM DEVELOPMENT SUMMARY
4.1 Sofiware Development Process

Much of the system was, after the fact, “conventional” software necded to automate
the task in the first place. This includes software for user interface, ATO representation,
tystem menagement, network control, etc. While ATO representation giso includes
Knowledge Base development, it is important to realize that all of this effort becomes much
simpler if 8 conventivnal manual system already exists and can be used as a basis for
devzlopment. To illustrate, suppose that a version of TEMPLAR providing ali the forms
and manual functionslity but none of the planning assistance existed at the beginning of
the project. By inference, then, the following work which had to be done for TEMPLAR,
would have slready been performed: '

o Thbe process and information flow for ATO planning would be defined in
complete detail. This importance of having this cannot be overemphasized.
Although the conventional system would, in essence, amount to a relational data
vase with forms for completing tables in that data base, knowledge of those
tables, relations, and the flow of information from one to the next is a major
requirement for Knowledge Basc design.

o One version of a user interface would have been defined. Ideally, user comments
on iis sirong and weak points would be Knowa.

The development of TEMPLAR was such that the "Al" components were developed
in parallel to these conventional eiements. While it may be the case that this reduced the
calendar schedule, it is clearly the case that it lead to a great deal of rework when
prematurely-developed ideas did not corsespond to the requirements of conventional ATO
pluoniog. An carlier emphasis on ciearly defining the conventional system processing
wotld have solved many of these problems.

If TEMPLAR were to be re-designed and re-coded, much of the conventional code
could be written in conventional ways, with conventional languages and ported to
conventional hardware. It is our belief, however, that there are core elements of the
planner for which adaptation to conventional languages and hardware would be a gross
mistake. Instead, we recommend that future programs embedding Al into operational
systems us¢ a hyb:id approach, embedding Al hardware (such as a co-processor poard) into
conventional workstation platforms, and achieving a combined software suite where
conventional functicas are implemented on the conventional side and Al functions are
implemented on the LISP side.

It is an incorrect extrapolation, however, to assume that implementation of the
conventional software elements, much less the Al elements, should be done conventionally,




[N Pl Lo,

as these statistics show:

Linec %

Gperational LISP Code 185,787 $5.24
Operational € Code 8,892 2.64
Forms Bditor 11,487 3.40
Porme Mapping Data 11314 3.36
Forms Compiler §,414 1.60
LISP Source Code Control System 4,060 1.44
Utilities and Tools 1,822 048
Classified Scenario Dats 20292 180
Total Hand-Coded Sofiware 255458 75.96
Form Definition Files 2,824 0.78
Window Definition Files 78.30¢ 28265
Total Machine-Coded Software 80830 24.03
Total TEMPLAR Source Code 334,388

Other indicators also support the notion that the TEMPLAR development process was

[-)

Page 38

undameatally different from conventiona! development:
0

There are no source code listings of the system. Programmers used the on-line
source code, assisted by the tools available on the Symbolics workstations.

Despite the size of the system, configuration control, intcgration, and system
builds required less than g one-person level of effort. This too was a result of
the tools inherent in the Symbolics LISP machine plus the simplicity of building
additional software tools in that environment,.

The actual lines of code developed were significantly higher, since a number of
major clements were re-written when new knowledge came to light or when
initial implementations proved unsuitable. Some elements were re-written several
times. Including re-work done in mid-stream to adapt to & major opcrating
system change, it i3 possible that as much as 60 percent of the software was re-
written.

Capital investment per programmer was significantly higher than on conventional
projects in which mu!ltiple programmers share a single conventional workstation,
or in which mulitiple programmers share a singie mainframe via terminals. In the
case of TEMPLAR, the average workstation cost was approximately $100K, and
on average every programmer h>d a dedicated workstation. When network code
was being developed or tested, a single programmer could productively occupy 2-
3 workstations (this was also true whea new versions of ths system were being
built). Even including the capital costs in the cost per line of code and backing



out extra hours worked by the programming staff, TEMPLAR was still
remarkably productive.

4.2 Random Observations

A number of other issues arose in the developmeat of TEMPLAR beyond those
discussed earlier in this report. The following attempts to identify the more important of
those issues and suggest how future >rojects cen deal with them advantageously.

4.2.1 Al Tools

The use of purchased tools, such as Knowledge Craft, enabled a faster start after coding
began, but ultimasely hindered development. In particular, because of the central role of the
frame system in the design of the software and because of the complexity of the TEMPLAR
Knowledge Base, the inability of TEMPLAR to obtain an ggreement from the vendor for
source code access to Knowledge Craft slowcd development materially while workarounds
for problems were sought. The generality present in Knowledge Craft, not all of which is
required for TEMPLAR, ultimately made the delivered ADM lsrger and slower than needs
be. We estimate that a new frame system, replacing the ¢lements of Knowledge Craft used
by TEMPLAR with a TEMPLAR-specific design, can be written straightforwardly so as to
both increase speed and decrease space requirements by a factor of two.

4.2.2 Commuznicatior Interfaces

Communications interfaces are both critical to operational use of TEMPLAR and
were, a3 is for most operational systems, a major source of problems. In order to have the
irformation base for pianning, TEMPLAR requires input of large quantities of data. Much
of this data is he'd in the LENSCE system, yet a lack of suitable communications interfaces
(and definitions thereof) made it impossible to construct the ¢lectronic link. The LENSCE
input link finally implemented was to have been tape-based; delays in receipt of test data
made interoperability testing of even the tape interface impossible. Lack of interface
definition caused several key information elements to not be available for extraction from
the interface data records, even though they are apparently there somewhere.

Similarly, information barriers made it impessible to test TEMPLAR for interface
with the CAFMS system and (worse yet), made it necessary to use a clumsy approach of
terminal emulaticn via personal computer to transmit the data. This is so despite the fact
that the new version of CAFMS is hosted on a YAX, and can apparently be run on the same
physical VAX as was declivered for TEMPLAR. Logically, the interface between the two
systems should have been via a shared database. (Actually, the same can be said of
LENSCE; again, what was delivered falis far short of the integrated, interoperable software
suite on a single YAX host that should have bsen possible.)




The operatioral consequence of not having been able to overcome thesc
communications interface problems -- management problems and not technical ones -- is
that the data which should flow into and out of TEMPLAR smoothly and rapidly is
bottlenecked, and may end up being hand typed. This defeats much of the advantage of
automation in the first place.

4.2.3 Map Backgrounds

Because so much of ATO planning is involved with maps, the map displays and map
backgrounds in particular were critically important. Initial TEMPLAR maps used World
Data Bank II couniry outlines; the proposed map backgrounds initially were to be derived
from DMA digital data.

Unfortunately, comprehensive DMA digital coverage in the area of interest was not
available, and what data did exist was difficult to obtain in large volumes when requested.
As a result, the program approach was changed to use map backgrounds derived from DMA
video disk maps. Although in general this approach worked well, the process and results
had the following problems:

o The map data base is large no matter how it is stored, and when processed via
the CPU and bitmap graphics in a workstation, is slow to access from disk and to
magipulate,

o The video images are in NTSC video format. Hundreds of video frames had to
be spliced together to form a single composite bitmap of the background. In the
process, the color maps of the images had to be standardized {and constrained to
& smaller set of colors at that), and the offsets and overlaps between frames
resolved. The video disk images were not constructed with this in mind. Severe
keystoning from the top of the map to the bottom occurred, as did major color
shifts from one map zone to another. The resulting process we used was
expensive and time consuming. Automated aids to the splicing process were not
possible, as the format of the data files showing the geocoordinates and video
disk address of a given frame is proprictary to the dcveloping company and was
not available to the project.

o In order to provide the maximum color fidelity, background color maps were
derived individually for each map background processed. Because the Symbolics
(and most other workstations) color hardware only supports color maps ou a per-
screen basis, it is not possible in the current TEMPLAR software to support the
us¢ of multiple bitmaps providing varying degrees of resoiution (e.g., 1 to 2
wmillion as well as 1 to 14 million). Constraining both images to the same color
map would permit simultaneous display of both resolution images, but would
degiade color fidelity. Color hardware supporting additional planes would also
solve the problems, but would increase the hardware cost and increase the size of

Page 40




P’ < Ko

the saved images.

4.2.4 Access (o Experts

In reirospect it is clear that more access to experts was nceded. We a/so necded a
complete planning walkthrough from those experts at the beginxing, yet didn't really have one
until the very end. Funnelling dialog with experts through some intcrmediary is a sure way
to kill a project such as this. We were fortunate to be able to talk to the experts directly at
times. Best would have been to have had resident experts for the first § months and last 9
months, plus telephone calls and meetings in between. The degree of user involvement
needed was underestimated by us and by the Air Force.

4.2.5 Implementation Language and Hardware

Parts of this system will be difficult or awkward to convert into conventional code, and
the result will be hard to maintain. This is not to say it cannot be done, but tc say that the
decision to implement an ATO planning system in C on strictly conventional hardwarc is
not one to be made lightly. The major issu¢ is memory management; others include the
widespread use of eval and apply. The resulting Ada or C software will be difficult to
<xpand and enhance.

For example, the network implementation relies on passing smali code fragments to
other machines for execution. This is a powerful, flexible mechanism that supports a wide
variety of operations without modification. While the networking in TEMPLAR cau
certainly ve done via conventional approaches that rely on messages and code to interpret
those messages, it will be larger and more trittle than the current LISP-unique approach.

As another example, it is commorly held that LISP (and LISP garbage collection in
particular) is incompatible with operational systems. While garbage collection is certainly a
concern in the design of such systems, it is worth observing the following facts:

o The design of TEMPLAR is such that users will re-boot the system once per day,
starting over ¢ach day with a fresh system.

o0 Most of the data structures in TEMPLAR are cither permanent and pre-built, or
clse highly transient aad thercforc quickly and efficiently reclaimed by the
Symbolics ephemeral garbage collector.

o On a machine with approximately 726KB of disk attached, so that a large swap
space is available, the onercus, hours-iong garbage collections associated with the
LISP stereotype are not required during normal TEMPLAR operation.

The argument that the Air Force cannot maintain LISP is not a sound rcason for

Page 41




wholesale conversion to conventional hardware and C. Despite LISP’s relative obscurity
among the ranks of common languages, that will not be the issuc making orgaaic support of
operational Al systems difficult. Regardless of language, the software which achicves the
broad, powerful functionality of TEMPLAR (and perhaps any operational Al system) can
be very large and very complex. Maintenance of such software requires very highly skilled
programmers familiar with the Al technology used in the system. Exampies of these
technology elements include frame systems, inheritance and object-oriented programming;
none of which are unique to LISP. If anything, LISP simplifies the maintenance problem in
the sense that it removes the necessity for the programmer to be conceraed with
housckeeping details which will surface in a C or Ada implementation.

The critical implication of this is that existing Air Force software suppori assets must
change to meet the challenge of operational Al systems, and that the nature of the plan to do
that support will have greater impact on the choices of implementation language and platform
than any other factor. Without such 2 plan, decisions about the supportability of onc or
another implementation language and platform are difficult to justify as more than
informed opinion.

4.2.6 The Missing Tasks

As an Advanced Deveiopmeny Modei TEMPLAR did not answer the following ——~
operational related questions: '

0 What arc appropriate methods and techniques for validating the knowledge and
methods incorporated into an opcrational Al-based system?

o What are aporopriate methods and techniques for collecting and inserting new or
changed methods and procedures into an operational Al-based system?

0 What are appropriate methods and procedures for providing software and
hardware support for an operational Al-based system?

o What are appropriate questions, methods, and procedures for evaluating the
performance of an operational Al-based system?

o What are appropriate test methods and standards for turnover of an operational
Al-based system to the user community?

o How can the results of this evaluation be incorporated into future system
development efforts?

The answers to these questions are critical for future planning of pregrams which
intend to use Al in an opcrational role. Because of the differences between laboratory
evaluations and operational use of a system, it is simply not pessible to answer these
questions with a high degree of confidence other than through development and operational

Page 42




test and evaluation.
4.2.7 The Cost of Incremental Prototypes

From a development standpoint, agreeing to deliver the internally-scheduled
developmental prototypes was a serious misteke. These prototypes, originally scheduled as
internal systems-integration milestones at approximately 4-month intervals, became formal
contract deliverables as part of a contract modification.

Unfortunately, we seriously underestimated the effort required to transform these
internal prototypes (which as planned were not completely debugged, and were really only
suitable for TEMPLAR programmer use) into oncs which could be released for examination
and cvaluation by non-programmers. A great deal of re-work and lost schedule was caused
by this decision. The problems encountered included the following:

o Mechanisms which were incompletely built could aot be left incomplete, as users
might stumble into them and hence into the debugger. Accordingly, cither a
throw-away mechanism had to be built in the interim, wasting effort, or else the
real mechanism had to be built quickly, without sufficient time to think through
all the implications. Examples of TEMPLAR software which were thrown out
and completely re-written due to this effect include the initial versions of the
Guidance and Allocationr forms, which were too slow to be used, and the map
edit software, for which there was insufficient time in the initial release to
connect it to the Knowledge Base. There were many others.

o Since Integration and Test (plus writing the User’s Guide sections and editing
that document) consumed 3-4 weeks prior to delivery, and since preparation,
conduct, and wrapup of Knowledge Acquisition sessions consumed 2-3 weeks
after each delivery, only 6 or 7 weeks of design and development (i.c., about 50%
of the time) were avsailable every 13 weeks.

This is not to say that the idea of incremental deliverics from the project was in
itself wrong -- the major problem was that the deliveries were scheduled too frequently,
ang there was no flexibility in their dates to allow for solving development problems.

4.2.8 On Appropriate Technology

It has beep observed that TEMPLAR uses 10 ycar old technology and therefore is in
some senses & technology failure. This criticism is correct in fact but irrelevant in
conclusion. The useful question to ask, rather than whethe: or not the software
incorporates the latest in Al technology, is whether or not TEMPLAR applies appropriate
technology to the problem being sclved and whether or not it applies it effectively.

Page 43




We believe that the frame technology used in the TEMPLAR knowledge basc is the
correct technology for use in representieg the force planning problem. TEMPLAR has
added to this technology in at least these ways:

o TEMPLAR showed that a flexible, responsive, powerful user interface can be
merged into a frame system, and indeccd can apply the power of that
representation to the problem of simplifyving a very complex user interface.

o0 TEMPLAR showed that the scale of the operational! force planning problem is
such that rule-based systems are impractical for its solution. The TEMPLAR
Knowjedge Base consists of about 70-100 thousand frames once the system has
been fully initialized. This is significantly larger than most knowledge-based
systems, with strong implications for the sizing of the hardware platform and for
selection of the representation and inference-generation technology.

o TEMPLAR showed that rule systems arc desirable as integrated components of
frame systems, however, and that existing, statc-of -the-art knowledge base
preducts do not provide the necessary integration ef rule and frame systems.
One possible formalization of the techniques applied 10 TEMPLAR would be to
apply RETE net-type rule systems in which the set of active rules and the
current working memory conient is determined by the system’s focus and
inheritance frem the frame system. This is a significant generalization from the
single-rule-set/single-working-memory capabilities of current rule-based
technology,

4.2.9 Network Considerations

TRW proposed a networked system of TEMPLAR workstations in order to be
responsive to the operational requirement of involving many individuals in the planning
process. This requirement has been validated through the TEMPLAR development; a single-
workstation system might be able to plan an ATO, but would be useless in the operational
context. The implemented TEMPLAR software incorporates a successful mechanism for
distributing the planning process across a network, including the following components:

o A networking backbone capable of linking multiple workstations together and
maintaining the Knowledge Base in a consistent state across that network.

Mechanisms for coordinating the actions of multiple active planners to prevent
simultancous modification of the same Knowledge Base ciements.

Mechanisms for coordinating rescurce allocation across the network.

Mechanisms for providing results of planning decisions across the network.

Implementation of TEMPLAR as a distributed network of workstations provides the




ability to allocate system resources to the development of multiple ATO’s simultancously. i
In addition, the use of multiple distributed workstations applies greater computing power to
the planning process, and provides hardware redundancy and sizing fiexibility not possible
in a centralized system.

Page 45




